
Semi-Supervised Text Classification via Self-Pretraining
Payam Karisani

Emory University

payam.karisani@emory.edu

Negin Karisani

Purdue University

nkarisan@purdue.edu

ABSTRACT
We present a neural semi-supervised learning model termed Self-

Pretraining. Our model is inspired by the classic self-training al-

gorithm. However, as opposed to self-training, Self-Pretraining

is threshold-free, it can potentially update its belief about previ-

ously labeled documents, and can cope with the semantic drift

problem. Self-Pretraining is iterative and consists of two classifiers.

In each iteration, one classifier draws a random set of unlabeled

documents and labels them. This set is used to initialize the second

classifier, to be further trained by the set of labeled documents.

The algorithm proceeds to the next iteration and the classifiers’

roles are reversed. To improve the flow of information across the

iterations and also to cope with the semantic drift problem, Self-

Pretraining employs an iterative distillation process, transfers hy-

potheses across the iterations, utilizes a two-stage training model,

uses an efficient learning rate schedule, and employs a pseudo-label

transformation heuristic. We have evaluated our model in three

publicly available social media datasets. Our experiments show

that Self-Pretraining outperforms the existing state-of-the-art semi-

supervised classifiers across multiple settings. Our code is available

at https://github.com/p-karisani/self_pretraining.

CCS CONCEPTS
• Information systems → Search results deduplication; So-
cial networks; Document filtering; Information extraction;
Clustering and classification; Nearest-neighbor search.

KEYWORDS
classification, semi-supervised learning, social media mining

ACM Reference Format:
Payam Karisani and Negin Karisani. 2021. Semi-Supervised Text Classi-

fication via Self-Pretraining. In Proceedings of the Fourteenth ACM Inter-
national Conference on Web Search and Data Mining (WSDM ’21), March
8–12, 2021, Virtual Event, Israel. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3437963.3441814

1 INTRODUCTION
Semi-supervised text classifiers have achieved remarkable success

in the past few years due to the high capacity of neural networks in

generalization. Even though modern classifiers usually rely on large

training sets, the introduction of contextual word embeddings and

language model pretraining [18, 41, 43] has tremendously reduced

the need for manual data annotation. However, the state-of-the-art

neural models are still prone to overfitting, particularly in the areas

with sparse and specialized language models. These areas include,

WSDM ’21, March 8–12, 2021, Virtual Event, Israel
2021. ACM ISBN 978-1-4503-8297-7/21/03. . . $15.00

https://doi.org/10.1145/3437963.3441814

but are not limited to: legal domain [26], medical domain [34], and

social media domain [3].

Depending on the task at hand, one solution to address this issue

is to automatically construct a large–and perhaps noisy–dataset

[20], however, this is not always feasible [59]. A more methodical

approach is to employ the techniques that improve generalization.

These techniques include exploiting neural word embeddings [29],

data augmentation [6], and domain adaptation [2]. Exploiting unla-

beled data [9, 58] is also a complementary approach. In this study,

we add to the body of literature on semi-supervised learning by

employing the properties of neural networks and proposing a novel

way to utilize unlabeled data. We focus on one of the areas that re-

portedly suffers from the lack of enough training data, i.e., the social

media mining. In addition to the lack of training data, the progress

in this domain is further hindered by the short document lengths,

informal language model, and typically ambiguous choice of vocab-

ularies. These qualities make the social media tasks a suitable test

bed for evaluating semi-supervised learning algorithms.

Our algorithm, termed Self-Pretraining, is inspired by the self-

training paradigm [58]. Similar to self-training, our algorithm is

iterative and in each iteration selects a set of unlabeled documents

to label. However, as opposed to self-training, our algorithm is

threshold-free. Thus, it does not rank the unlabeled documents

based on their prediction confidences. This makes our algorithm

particularly suitable for the neural network models due to their

poorly calibrated outputs [35]. Additionally, our algorithm is able to

cope with the semantic drift problem [12]. That is, it is resilient to

the noise in the pseudo-labels as the number of iterations increases

and the error rate of the underlying classifier rises. Furthermore,

Self-Pretraining is able to potentially revise the labels of the previ-

ously labeled documents. To achieve these, our model employs an

iterative distillation process, i.e., in each iteration, the information

obtained in the previous iterations is distilled into the classifier. It

transfers a hypothesis across iterations, and utilizes a two-stage

learning model, where the set of pseudo-labels is used to initialize

the classifier, and the set of labeled documents is used to finetune

the classifier. Additionally, Self-Pretraining adapts a novel learn-

ing rate schedule to efficiently integrate the two sets of noisy and

noise-free training examples. Finally, in order to further mitigate

the impact of noisy pseudo-labels in every iteration, our model

transforms the distribution of pseudo-labels such that it reflects the

distribution of the labels in the previous iterations.

Our experiments in three publicly available Twitter datasets

show that Self-Pretraining outperforms the state of the art in mul-

tiple settings where only a few hundred labeled documents are

available. This is significant, considering that the underlying clas-

sifier of our algorithm and all the baseline models is BERT [18]

which already uses the language model pretraining, and therefore,

makes any improvement over the baselines very challenging. We

https://github.com/p-karisani/self_pretraining
https://doi.org/10.1145/3437963.3441814
https://doi.org/10.1145/3437963.3441814
https://doi.org/10.1145/3437963.3441814

also carry out a comprehensive set of experiments to better under-

stand the qualities of Self-Pretraining. Particularly, we demonstrate

the robustness of our model against the noise in the pseudo-labels.

The contributions of our study are as follows: 1) We propose a

novel semi-supervised learning framework termed Self-Pretraining.

Our model is based on the self-training paradigm, however, it is

threshold-free, it can cope with the semantic drift problem, and can

also revise the previously labeled documents. To our knowledge,

Self-Pretraining is the first model that addresses these drawbacks

in a unified framework. 2) We propose a novel learning rate sched-

ule to effectively integrate the optimization procedure with our

two-stage semi-supervised learning process. 3) In order to further

mitigate the semantic drift problem, we model the class distribution

of the pseudo-labels as a stochastic process across the bootstrap-

ping iterations, and propose a novel approach to transform the class

distributions. 4) We carry out a comprehensive set of experiments

across three publicly available Twitter datasets, and demonstrate

that our model outperforms several state-of-the-art baselines in

multiple settings.

Our research clearly pushes the state of the art in semi-supervised

text classification. We believe the ideas presented in our paper

can be applied to other domains, e.g., image classification. Future

work may explore this direction. In the next section, we provide

an overview of the related studies and highlight the qualities of

Self-Pretraining.

2 RELATEDWORK
Unlabeled data in semi-supervised learning. Unlabeled data

can be exploited in multiple ways. It can be used as a meta-source

of information [21], it can be used as a regularizer [56], or it can

be used in a domain adaptation setting to correlate the source

and target data [51]. A more recent interest in literature is self-
supervision, where a self-contained task is defined such that no

manual annotation is required. Instances of such tasks are language

model pretraining [18, 41] in NLP, and contrastive learning in image

processing [15, 46]. From a different perspective, self-supervision

studies can be categorized into task-agnostic [10] and task-specific

[22] approaches. This has given rise to the notion of “pretrain,

then finetune” the model. We integrate this paradigm into the self-

training algorithm.

Bootstrapping in semi-supervised learning. Self-training is the
oldest approach to semi-supervised learning [14] dating back to

1965 [48]. This idea re-emerged in the seminal work of Yarowsky

[58] for NLP tasks in 1995, and also once more in the computer

vision community in 2013 as pseudo-labeling [33]. This algorithm

is a wrapper that repeatedly uses a supervised algorithm as the

underlying model. There are multiple assumptions under which

self-training–and in general semi-supervised learning–is expected

to perform well. For instance, the smoothness assumption that states
if the two data points 𝑥1 and 𝑥2 are close, then their predictions 𝑦1
and 𝑦2 should be also close–this assumption has been the basis of

algorithms such as MixUp [60] and MixMatch [8]. As we discuss in

the next section, one unsatisfactory aspect of self-training is that it

relies on the properties of the underlying predictive model, e.g., the

model output distributions. There have been attempts to address

this drawback. For instance, throttling [1] can be used to dampen the

effect of noisy candidates, or in the context of transductive learning,

the density of the unlabeled data points can be incorporated to

mitigate this issue [49].

In the past few years, studies have explored the efficacy of the

neural networks as the underlying predictive model in self-training.

A neural network variant of co-training [9] is proposed in [42]. In

[30], the authors propose a framework to integrate human knowl-

edge with co-training. In [55], a reinforcement learning variant

of co-training is proposed. In [44], a neural network variant of

tri-training with disagreement [50] is presented, and it is shown

that the combination is a surprisingly strong baseline in the do-

main adaptation setting. The authors in [13] propose to use per-

centile scores instead of the confidence scores to select the best

pseudo-labels; and the authors in [39] employ Bayesian neural

networks to select the most and the least confident pseudo-labels

in every iteration. In [4], a new document sampling strategy for

self-training is proposed. The model, in addition to the classifier

confidence, employs the training epochs in which the unlabeled

documents are approximately correctly labeled. In [5], the authors

propose to integrate MixUp [60] with the oversampling of the la-

beled training examples. They show that self-training is indeed

a very strong baseline comparing to the common regularization

and data augmentation techniques. In comparison to these studies,

Self-Pretraining is the first model that employs model distillation

[25] along a hypothesis to transfer information across iterations,

enabling it to potentially revise the pseudo-labels. It integrates the

pretraining/finetuning paradigm with self-training, utilizes an ef-

ficient optimization procedure along a perturbation technique to

mitigate the negative impact of noisy pseudo-labels.

Other closely related studies. In addition to the studies above,

Self-Pretraining is also related to the studies on model distillation

[25] and temporal ensembling [32]. Model distillation was proposed

in [11, 25] to transfer the knowledge from one model to another

model. In [16], the authors show that transferring the knowledge of

a big network, trained by a self-supervised task, to a small network

improves generalization. Their main contribution is to show that

big models are trained easier, and therefore, can be used as a proxy

to train small networks. Their model is not iterative, and does not

explore the unlabeled data to extract new information. Born-again

networks were proposed in [19], the authors show that simply dis-

tilling a neural network into itself improves performance. Their

model is not a semi-supervised algorithm, and is not proposed to

exploit unlabeled data. The authors in [57] show that the regular

neural self-training algorithm can be improved by adding noise

to the model. Similar to our work, they allow the pseudo-labels

evolve over iterations. Beyond this step, they don’t propose any

modification to the self-training algorithm. Additionally, the effi-

cacy of their model is not explored in the semi-supervised setting.

A very close approach to this study is presented in [23], where the

authors again show that adding noise to the inner representation

of the model enhances the self-training performance. Temporal

ensembling was proposed in [32]. The authors propose to maintain

the per-sample prediction average of the unlabeled data across the

epochs and constrain the prediction variance. Their model is not

based on self-training, has no strategy to separate labeled from un-

labeled data, and becomes unwieldy when using large datasets. The

authors in [52] resolve the high complexity of temporal ensembling

by updating the weights of the model across the epochs, instead of

storing the predictions.

3 SEMI-SUPERVISED LEARNING VIA
SELF-PRETRAINING

We begin this section by providing an overview of Self-Pretraining

and highlighting its differences from the self-training algorithm.

Then we introduce a series of strategies to overcome the drawbacks

of the vanilla Self-Pretraining
1
.

In the self-training algorithm [58], a small set of labeled docu-

ments 𝐿 and a large set of unlabeled documents 𝑈 are available

for training. The algorithm is iterative and in each iteration the

predictive model𝑀 is trained on the current set 𝐿, and is used to

probabilistically label the current set𝑈 . Given the hyper-parameter

\ as the minimum confidence threshold, the most confidently la-

beled documents in𝑈 and their associated pseudo-labels are selected
to be augmented with the set 𝐿. This procedure is repeated till a

certain criterion is met. There are three drawbacks with this algo-

rithm: 1) The semantic drift problem [12], where the increasingly

negative impact of noisy pseudo-labels overshadows the benefit of

incorporating unlabeled data. 2) Reliance on the model calibration.

If the underlying classifier is unable to accurately model the class

distributions, then, it will fail to properly rank the candidate doc-

uments, e.g., in the case of neural networks [35]. 3) Being unable

to revise the pseudo-labels once they are assigned to the unlabeled

documents and augmented with the set of labeled documents. Even

though there exist techniques to address these challenges under

certain conditions, e.g., throttling [1] for the poor model calibration

or mutual exclusive bootstrapping [17] for the semantic drift, to

our knowledge, Self-Pretraining is the first unified framework to

address all three.

Our algorithm is iterative and utilizes two neural networks as the

underlying classifiers. Algorithm 1 illustrates Self-Pretraining in its

basic form. Initially, the set 𝐿 is used to train the network𝑀1 (Line

2), then the parameters of𝑀1 are copied to the network𝑀2 (Line 5).

In the next step, a set of unlabeled documents are randomly drawn

from 𝑈 (Line 7). This set is labeled by 𝑀2 and used along the set

𝐿 to retrain
2 𝑀1 (Line 8). The role of the two networks is reversed

in the next iteration. In each iteration, the sample size is increased

by 𝑘 (Line 6), and the algorithm stops when the sample set covers

the entire set 𝑈 . Finally, the ensemble of 𝑀1 and 𝑀2 can be used

to label the unseen documents–we used the mean of their class

predictions.

Algorithm 1 has two advantages: 1) To select the pseudo-labels

the class distribution is not taken into account, therefore, there is

no constraint on the classifier capacity in ranking the unlabeled

documents. Additionally, this prevents the model from repeatedly

selecting a fixed set of unlabeled documents in every iteration–i.e.,

the set of highly confident pseudo-labels. 2) The information that is

transferred across the iterations is in the form of a hypothesis rather

than a set of fixed pseudo-labels. Therefore, the model belief about

the pseudo-labels can evolve over time–the pseudo-labels are not

augmented with the set of labeled documents. On the other hand,

1
We focus on the binary classification problems.

2
Note that by definition, the neural self-training requires reinitialization and retraining

in every iteration [44], thus our algorithm is comparable to other self-training models

in terms of runtime.

Algorithm 1 Overview of Vanilla Self-Pretraining

1: function self_pretraining(𝐿,𝑈 , 𝑘)

2: 𝑀1 ← 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙 (𝐿)
3: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 0

4: repeat
5: 𝑀2 ← 𝑐𝑜𝑝𝑦_𝑚𝑜𝑑𝑒𝑙 (𝑀1)
6: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 + 𝑘
7: 𝐶 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒 (𝑈 , 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒)
8: 𝑀1 ← 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙 ({(𝐶,𝑀2 (𝐶)) ∪ 𝐿})
9: until 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 < |𝑈 |
10: return𝑀1, 𝑀2

this algorithm has one substantial disadvantage, and that is the

problem of semantic drift. In fact, randomly sampling from the set

of unlabeled documents exacerbates this problem by introducing

noisy labels and pushing the transferred hypothesis towards a sub-

optimal point. In the following, we exploit the neural network

properties and introduce a series of strategies to cope with this

problem and also to enhance the flow of information across the

iterations.

3.1 Hypothesis Transfer and Iterative
Distillation

Self-Pretraining transfers a hypothesis–a learned function–from

one iteration to the next iteration. In each iteration, this hypothesis

is used to form a new one by creating a set of pseudo-labels and aug-

menting them with the set of labeled documents. Even though the

ultimate criterion is maximizing the model utility, the short term

goal in each iteration is not necessarily making accurate predictions

but to carefully transfer the knowledge from one model to another.

These two processes are not necessarily in accordance with each

other, since the former may rely on the learner outcome and the

latter may rely on the learning procedure itself. Thus, the classi-

fier labels, even though informative, are not expressive enough to

transfer the entire knowledge from one iteration to the next one.

The authors in [11, 25] propose an algorithm called model distil-

lation to transfer the knowledge from a large model (called teacher)
to a small model (called student). Model distillation is based on the

argument that the class distribution carries a significant amount

of information regarding the classifier decision boundary. For in-

stance, given a document 𝑑 that is labeled positive, it is nontrivial

information to know that if the class prediction was 95% positive or

65% positive. The authors in [25] use model distillation to transfer

knowledge from one network to another by modifying the softmax

layer as follows:

𝑎𝑖=
exp

𝑧𝑖
𝑇∑

𝑗exp
𝑧 𝑗
𝑇

(1)

where 𝑧𝑖 is the last layer i-th logit, 𝑗 is the number of classes, and 𝑎𝑖
is the class prediction. The hyper-parameter𝑇 is called temperature

and is introduced to smooth the class predictions. A higher temper-

ature results in a higher entropy in predictions. This is particularly

desirable, since neural networks are known to have a low entropy

in their predictions [35].

Given the argument above, we employ model distillation in

Self-Pretraining, and effectively distill the previous iterations into

the student network𝑀1. Thus, in each iteration, instead of using

the teacher–𝑀2–hard predictions on unlabeled documents, we use

the soft predictions along the set 𝐿 to train the student network–

Algorithm 1, Line 8.

3.2 Two-Stage Semi-Supervised Learning
Aswementioned earlier, self-training suffers from the semantic drift

problem. This problem occurs when the errors primarily caused by

the pseudo-labels accumulate across iterations and ultimately dis-

tort the classifier boundary. Even though the minimum confidence

threshold \ can potentially prevent spurious pseudo-labels from

entering the training set, as the set 𝐿 grows in size the probability

of mislabeling documents increases correspondingly. This problem

is even severer in our model, since it is threshold-free. One naive

solution is to assign a lower weight to the pseudo-labels, however,

we observed in our experiments that this approach is not effective

enough to resolve the underlying problem.

To mitigate this problem, one solution is to process the set of

pseudo-labels and decouple the information that contradicts the

information stored in the set 𝐿. Erasing this section of the pseudo-

labels can lower the error rate and subsequently improve the hy-

pothesis in the current iteration. To accomplish this, we exploit

the catastrophic forgetting phenomenon in the neural networks

[31, 36]. Catastrophic forgetting occurs in the continual learning

setting where a network is trained on a series of tasks. Each training

procedure updates the parameters of the model to meet the require-

ments of the objective function, and the updates in the current task

may contradict and erase the information related to the previous

tasks. This effect is typically undesirable, however, in the context

of Self-Pretraining, we use this mechanism as a proxy to build a

hierarchy of information in the network. Therefore, we make a

small modification in Algorithm 1. Instead of aggregating the set

of pseudo-labels with the set of labeled documents–Line 8–we first

use the set of pseudo-labels to initialize–train–the current network

𝑀1, and then further train it using the set of labeled documents.

Decomposing the training procedure into two stages introduces

a new challenge, and that is the possibility of completely updating

the network parameters in order to learn the regularities in the set

of labeled documents. To avoid this, we propose to use the following

objective function while training the model𝑀1 using the set 𝐿:

L=(1−_) (−
𝑁∑
𝑖=1

[𝑦𝑖log𝑎𝑖+(1−𝑦𝑖)log(1−𝑎𝑖)])+

_(−
𝑁∑
𝑖=1

[𝑞𝑖log𝑎′𝑖+(1−𝑞𝑖)log(1−𝑎
′
𝑖)])

(2)

where 𝑁 is the number of the documents in the set 𝐿, 𝑦𝑖 is the

true label of the document 𝑑𝑖 , 𝑎𝑖 is the class prediction of𝑀1 for 𝑑𝑖 ,

𝑎′
𝑖
is the class prediction of 𝑀1 for 𝑑𝑖 with a high temperature as

described in Section 3.1, and 𝑞𝑖 is the class prediction of𝑀2 for 𝑑𝑖
with the same temperature as that of 𝑀1. _ is a hyper-parameter

to govern the relative weight of the two terms (0 ≤ _ ≤ 1). Since

the gradients of the second term in Equation 2 scale by
1

𝑇 2
, in order

to balance the impact of the two terms in back-propagation, we

multiply these gradients by 𝑇 2
–see Equation 1.

The first term in Equation 2 is the cross entropy between the

ground truth labels and the class probabilities of 𝑀1. The second

term is the cross entropy between the class probabilities of𝑀2 and

𝑀1. This objective function is an effort to keep a balance between

the information that is transferred from the previous iterations

and the information that is extracted from the set of labeled docu-

ments 𝐿.

In Section 5 we demonstrate that the ideas proposed in this

section greatly mounts the resistance of Self-Pretraining to the

noise in the pseudo-labels. These ideas are related to two categories

of studies: 1) The studies on pretraining neural networks [24, 27].

2) The studies on curriculum learning [7]. Researchers [24, 27] in

both NLP and the vision community have shown that pretraining
a neural network with out-of-domain data and then finetuning it

with the target data can significantly contribute to the performance.

These two steps are analogous to the two stages that we described

in this section. Additionally, our work is also closely related to the

idea of curriculum learning [7], where it is shown that a learner can

leverage the order of the training examples to learn more efficiently.

Even though Self-Pretraining employs this mechanism, the criterion

to determine the order of the training examples is not based on the

properties of the data points but is based on the source of the labels.

3.3 Right Trapezoidal Learning Rates
In the previous section, we employed an approach to mitigate the

semantic drift problem by exploiting the catastrophic forgetting

phenomenon. This two-stage strategy creates a suitable opportunity

for enhancing the optimization process. Since the pseudo-labels

are potentially noisy, we propose to use this set to explore the

hypothesis space and detect the region that contains a better local-

optima. Thereafter, the set of labeled documents, which are noise-

free, can be used to detect the target local-optima.

Given the argument above, we propose to use a right trapezoidal
learning rate–illustrated in Figure 1–as follows:

[𝑡=

{
𝑅 𝑏𝑎𝑡𝑐ℎ𝑡⊂𝐶

𝑅 − 𝑅 𝑡−𝑏𝐶
𝑏𝐿

𝑏𝑎𝑡𝑐ℎ𝑡⊂𝐿
where 𝑡 denotes the current time step, and 𝑏𝑎𝑡𝑐ℎ𝑡 is the current

batch of documents being processed. [𝑡 is the current learning rate,

𝑅 is the initial learning rate, 𝐶 is the set of pseudo-labels, 𝐿 is the

set of labeled documents, 𝑏𝐶 is the number of pseudo-label batches,

and 𝑏𝐿 is the number of labeled batches.

Our proposed learning rate is composed of two phases: 1) A

fixed learning rate–the dashed line in Figure 1–where the pseudo-

labels are used to train the model 𝑀1–see Algorithm 1. In this

stage, the network parameters can freely update, and therefore, the

learner can essentially explore the hypothesis space. 2) A gradually

decreasing learning rate–the solid slanted line in Figure 1–where

the labeled documents are used to further train the network. In

this stage, the optimizer settles down, therefore, we use the noise-

free labeled documents, since even a small perturbation in the data

may cause a significant loss. Having a two-phase learning rate

also organically integrates with our two-stage semi-supervised

learning procedure. Since the gradual reduction in the learning rate,

prevents the objective of the second task from completely erasing

the knowledge transferred from the previous iterations.

3.4 Inertial Class Distributions
Semi-supervised learning models rely on unlabeled data as their

primary source of information. While these methods have obtained

Le
ar

n
in

g
R

at
e

Learning Steps

R

Figure 1: The Self-Pretraining learning rate schedule. The dashed
horizontal line is the learning rate of the network during the train-
ing by the pseudo-labels, and the slanted line is the learning rate
during the training by the labeled documents.

promising results, they are inherently prone to overfitting on the

irregularities in the unlabeled data. Introducing an inductive bias

[38] into the semi-supervised learning algorithms is a common

approach to increase their robustness. For instance metric regular-

ization [47] or temporal ensembling [32] are a few examples. While

these techniques can be integrated into Self-Pretraining , in this

section, we opt to explore a new direction.

We hypothesize that the class probability distribution of the

randomly selected set of unlabeled documents–Algorithm 1, Line 8–

should evolve slowly and avoid abrupt transitions across iterations.

This is a harsh assumption, since this probability distribution also

depends on the drawn samples. However, we argue that an abrupt

change in this distribution can be the sign of an influx of noisy

pseudo-labels in the previous iterations. Thus, we aim to prohibit

such changes. To achieve this, we assume the distribution of the

class probabilities is a random process dynamically evolving across

the iterations, and the class probability distribution of the selected

unlabeled documents in every iteration–𝑀2 (𝐶) in Algorithm 1–is

a sample from the underlying random variables.

For simplicity, we assume the process consists of only a family

of two Gaussian random variables 𝑆+ and 𝑆−, where 𝑆+ is the state
of the positive pseudo-labels, and 𝑆− is the state of the negative

pseudo-labels. The sample mean and variance of 𝑆+ in the iteration

𝑡 (i.e., 𝑆+𝑡) are given by:

`𝑡=

∑𝑛
𝑖=1𝑝

𝑡
𝑖

𝑛

𝜎2𝑡 =

∑𝑛
𝑖=1(𝑝𝑡𝑖−`𝑡)

2

𝑛
where 𝑛 is the number of positive pseudo-labels in the iteration 𝑡 ,

and 𝑝𝑡
𝑖
is the probability of the i-th positive pseudo-label belonging

to the positive class–it is clear that 0.5 ≤ 𝑝𝑡
𝑖
, because the sample is

positive. Correspondingly, the sample mean and variance of 𝑆− in
the iteration 𝑡 (i.e., 𝑆−𝑡) are given by:

𝛾𝑡=

∑𝑚
𝑖=1𝑞

𝑡
𝑖

𝑚

𝜑2𝑡=

∑𝑚
𝑖=1(𝑞𝑡𝑖−𝛾𝑡)

2

𝑚
where𝑚 is the number of negative pseudo-labels in the iteration 𝑡 ,

and 𝑞𝑡
𝑖
is the probability of the i-th negative pseudo-label belonging

to the negative class–note that 0.5 ≤ 𝑞𝑡
𝑖
and also note that for every

pseudo-label 𝑝𝑡
𝑖
+ 𝑞𝑡

𝑖
= 1.

In the iteration 𝑡 + 1, the sample distributions of the random

variables 𝑆+ and 𝑆− proceed to 𝑆+
𝑡+1 ∼ N(`𝑡+1, 𝜎

2

𝑡+1) and 𝑆−
𝑡+1 ∼

N(𝛾𝑡+1, 𝜑2𝑡+1). These updates can be due to the randomness in the

model initialization, the randomness in the selected set of unla-

beled documents in the iteration 𝑡 , or partially due to the noisy

pseudo-labels introduced in the iteration 𝑡 . More specifically, the

misclassifications of the model𝑀2 in the iteration 𝑡–see Algorithm

1–which were subsequently used to pretrain the model 𝑀1, and

ultimately distorted the class distribution of the set of pseudo-labels

in the iteration 𝑡 + 1. To dampen the impact of this noise, we define

two Gaussian distributions 𝑆+
𝑡+1 and 𝑆

−
𝑡+1 as the linear combination

of the class distributions in the iterations 𝑡 and 𝑡 + 1, and project
3

the pseudo-labels in 𝑆+
𝑡+1 into 𝑆

+
𝑡+1, and the pseudo-labels in 𝑆−

𝑡+1
into 𝑆−

𝑡+1. Thus:
𝑆+𝑡+1=𝛼 𝑆+𝑡 +(1−𝛼) 𝑆+𝑡+1
𝑆−𝑡+1=𝛼 𝑆−𝑡 +(1−𝛼) 𝑆−𝑡+1

(3)

where 𝛼 is a hyper-parameter to govern the rate at which the prob-

ability distributions can evolve in every iteration. The new distri-

butions 𝑆+
𝑡+1 and 𝑆

−
𝑡+1 are defined between the class distributions in

the iteration 𝑡 and 𝑡 + 1. The hyper-parameter 𝛼 determines the de-

gree at which the pseudo-labels in the iteration 𝑡 + 1 are perturbed
to resemble the pseudo-labels in the iteration 𝑡 . By employing

this mechanism, the sudden abrupt changes in the distribution of

pseudo-labels are avoided. We perform this step after we generate

the pseudo-labels using the model𝑀2, and before using this set to

pretrain the model𝑀1–Algorithm 1, Line 8.

In Section 5, we show that Self-Pretraining algorithm, along the

techniques that we introduced in the sections 3.1, 3.2, 3.3, and 3.4

achieves the state-of-the-art results in multiple settings. In the next

section, we describe our datasets, baselines, and training setup.

4 EXPERIMENTAL SETUP
We begin this section by describing the datasets that we used, then

we provide a brief overview of the baseline models, and finally

review the detail of the experiments.

4.1 Datasets
We evaluate Self-Pretraining on three Twitter text classification

tasks
4
: 1) Adverse Drug Reaction monitoring (ADR). In this task,

the goal is to detect the tweets that report an adverse drug effect.

We used the dataset introduced in [53] prepared for the ACL 2019

SMM4H Shared Task. 2) Crisis Report Detection (CRD). In this task,

the goal is to detect the tweets that mention an event related to nat-

ural disasters. We used the dataset introduced in [2] about the 2015

Nepal earthquake. 3) Product Consumption Pattern identification

(PCP). In this task, the goal is to identify the tweets that report the

usage of a product. We used the dataset introduced in [28], which

is about receiving an influenza vaccine.

The ADR and Earthquake datasets are releasedwith pre-specified

training and test sets. In Product dataset we used the tweets pub-

lished in 2013 and 2014 for the training set, and the tweets published

in 2015 and 2016 for the test set. Table 1 summarizes the datasets.

We see that Earthquake dataset is balanced and ADR dataset is

3
No projection is performed in the first iteration.

4
Please refer to the cited articles for the analysis and discussion on the difficulties of

these tasks, we skip this subject.

Training Test

Dataset Tweets Neg Pos Tweets Neg Pos

ADR 20624 91% 9% 4992 92% 8%

Earthquake 8166 53% 47% 3502 53% 47%

Product 4503 69% 31% 2114 78% 22%

Table 1: Summary of ADR , Earthquake , and Product datasets.

highly imbalanced. The Earthquake dataset is released along a set

of unlabeled tweets. For the other two datasets, we used the Twitter

API and crawled 10,000 related tweets for each one to be used as the

unlabeled sets (the set𝑈 in Algorithm 1). For ADR dataset we used

the drug names to collect the unlabeled set and for Product dataset

we used the query “flu AND (shot OR vaccine)” to collect the set.

4.2 Baselines
We compare our model with six baselines.

Baseline. The setting for evaluating semi-supervised learning mod-

els should be realistic. Pretrained contextual language models are

the primary ingredient of the state-of-the-art text classifiers. Thus,

we used BERT [18] as the naive baseline, and also as the underly-

ing classifier for all the other baselines. Note that this makes any

improvement over the base classifier very challenging, since the

improvement should be additive. We train this model on the set

of labeled documents, and evaluate on the test set. We used the

published pretrained base variant, followed by one fully connected

layer and one softmax layer. We used the Pytorch implementation

[54] of BERT; the settings are identical to the suggestions in [18].

Self-training.We included the regular self-training algorithm [58],

where in each iteration the top pseudo-labels, subject to a minimum

threshold confidence, are selected and added to the labeled set. We

used one instance of Baseline in this algorithm.

Tri-training+. We included a variant of tri-training algorithm

called tri-training with disagreement [50]. In [44], the authors show

that this model is a very strong baseline for semi-supervised learn-

ing. We used three instances of Baseline in this algorithm.

Mutual-learning.We included the model introduced in [61]. This

model is an ensemble, and is based on the idea that increasing the

entropy of the class predictions improves generalization [40]. We

used two instances of Baseline in this model–in the parallel setting.

Spaced-rep. We included the model introduced in [4]. This model

employs a queuing technique along a validation set to select the

unlabeled documents that are easy and also informative for the

task. We used our own implementation of this model.

Co-Decomp.We included the framework introduced in [30]. This

model uses domain knowledge to decompose the task into a set of

subtasks to be solved in a multi-view setting. We used the keyword

level representations and sentence level representations as the two

views. We used two instances of Baseline in this algorithm.

Self-Pretraining. The model that we introduced in Section 3. We

used two instances of Baseline as𝑀1 and𝑀2.

4.3 Experimental Details
To evaluate the models in the semi-supervised setting, we sampled

a small subset of the training sets
5
and did not use the rest of the

5
Using the entire set of labeled tweets turns the classification task into a supervised

problem, which is not the subject of our study.

tweets. Note that the remaining set was not used as the unlabeled

data either–see Section 4.1 for the description of the unlabeled

sets. To sample the data, we used a stratified random sampling to

preserve the ratio of the positive to the negative documents. We also

ensured that the initial labeled set is identical for all the models. We

repeated all the experiments 3 times with different random seeds.

We will report the average across the runs. All the baseline models

use throttling [1] with confidence thresholding (\ = 0.9). We also

linearly increased the size of the sample set [45], however, did not

add more than 10% of the current training set in each iteration.

In our experiments we observed that the performances of self-
training andCo-Decomp degrade if we use the entire set of unlabeled
data–due to the semantic drift problem. Thus, we assumed the

number of the iterations in these algorithms is a hyper-parameter

and used 20% of the labeled set as the validation set to find the

best value. Tri-training+ has an internal stopping criterion. Mutual-
learning uses the unlabeled data as a regularizer. Spaced-rep requires
a validation set for the stopping criterion and also for the candidate

selection. Thus, in this model we used 20% of the labeled set as the

validation set. We also set the number of queues to 6, the rest of

the settings are identical to what is used in [4].

Since we are experimenting in the semi-supervised setting, we

did not do full hyper-parameter tuning. We used the training set in

Product dataset and searched for the optimal values of _ in Equation

2 and 𝛼 in Equation 3. Their best values are 0.3 and 0.1 respectively.

We set the step size 𝑘 in Algorithm 1 to 2,000 and the temperature𝑇

in Equation 1 to 3. In our two-stage training procedure the goal of

the first step is the model initialization, thus we trained the network

for only 1 epoch. In the rest of the cases, including in our model

and the baselines we trained the models for 3 epochs. The only

exception is Space-rep, which requires a certain number of training

epochs with early stopping. To train BERT in all of the cases we

used a setting identical to that of the reference [18]–we set the

batch-size to 32. Following the argument in [37], we used F1 in the

positive class to tune the models. In the next section, we report

average F1, Precision, and Recall of the models across the runs.

5 RESULTS AND DISCUSSION
Webegin this section by reporting themain results. Thenwe present

a series of experiments that we carried out to better understand the

properties of Self-Pretraining.

5.1 Main Results
Table 2 reports the performance of Self-Pretraining in comparison

to the baselines under two sampling quantities–i.e, 300 and 500

initial random tweets–in the three datasets. We see that in all of

the cases Self-Pretraining is either the top model or on a par with

the top model. The difference in ADR dataset is substantial, how-

ever, in Earthquake dataset the difference is very small. ADR is an

imbalanced dataset. Our case by case inspections also showed that

the positive tweets in this dataset are very diverse, which makes

the models very susceptible to the number of training examples.

We also see that Mutual-learning completely fails in this dataset.

Our experiments showed that this is due the the skewed class dis-

tributions in this dataset
6
. Surprisingly, we see that Spaced-rep is

6
We built two imbalanced datasets by subsampling from Earthquake and Prod-

uct datasets, this model also failed in these cases.

ADR dataset Earthquake dataset Product dataset

Tweets Model F1 Precision Recall F1 Precision Recall F1 Precision Recall

300

Baseline 0.238 0.237 0.342 0.715 0.692 0.749 0.728 0.696 0.770

Self-training 0.303 0.269 0.350 0.728 0.697 0.762 0.731 0.675 0.798

Tri-training+ 0.306 0.236 0.448 0.735 0.680 0.799 0.734 0.659 0.828
Mutual-learning 0.024 0.707 0.012 0.743 0.685 0.814 0.753 0.778 0.730

Spaced-rep 0.258 0.248 0.277 0.721 0.650 0.811 0.727 0.701 0.760

Co-Decomp 0.310 0.288 0.356 0.728 0.722 0.735 0.754 0.756 0.758

Self-Pretraining 0.397 0.370 0.440 0.737 0.704 0.772 0.766 0.757 0.777

500

Baseline 0.312 0.253 0.411 0.746 0.735 0.760 0.740 0.704 0.782

Self-training 0.335 0.300 0.387 0.737 0.765 0.714 0.741 0.739 0.745

Tri-training+ 0.365 0.298 0.480 0.747 0.707 0.793 0.758 0.697 0.833
Mutual-learning 0.108 0.638 0.059 0.751 0.730 0.773 0.767 0.811 0.728

Spaced-rep 0.295 0.274 0.417 0.728 0.694 0.775 0.737 0.693 0.788

Co-Decomp 0.345 0.313 0.388 0.749 0.746 0.752 0.766 0.771 0.764

Self-Pretraining 0.420 0.376 0.483 0.752 0.718 0.789 0.787 0.784 0.792

Table 2: F1, precision, and recall of Self-Pretraining in ADR , Earthquake , and Product datasets compared to the baseline
models. The models were trained on 300 and 500 labeled user postings.

k F1 Precision Recall
1000 0.395 0.306 0.565

2000 0.420 0.376 0.483

3000 0.428 0.386 0.485

4000 0.413 0.347 0.537

Table 3: Results of Self-Pretraining with different values of 𝑘–
the number of randomly selected pseudo-labels–in the test set of
ADR dataset. The models began with 500 labeled user postings.

performing poorly in the experiments, even though this model was

evaluated on social media tasks before [4]. We believe the reason

is as follows: This model relies on the number of training epochs

to construct its internal data structure for ranking the candidate

tweets. When the underlying classifier is a pretrained language

model, e.g., bert, increasing the number of epochs may result in

overfitting and therefore, contradicts the purpose. On the other

hand, early stopping also prevents the model from separating the

informative from uninformative tweets.

5.2 Empirical Analysis
We begin this section by reporting the effect of the step size 𝑘 on

Self-Pretraining –see Algorithm 1. Table 3 reports F1, precision,

and recall of Self-Pretraining at varying step sizes in the test set of

ADR dataset. Since this datset is the largest one, we report all of the

experiments in this dataset. We see that the performance improves

up to the step size of 3000 unlabeled tweets per iteration. We still

do not have a concrete explanation to justify this trend, since it

is natural to expect the smaller step sizes yield better results. One

reason may be that if the set of pseudo-labels is small, the network

can perfectly learn the noise in the set during the pretraining. In

Section 3.2 we argued that the two-stage training can cope with

the semantic drift problem. To support this argument, we report

the performance of the middle classifiers 𝑀1 at the end of every

iteration. Figure 2 reports the performances during the training

for varying step sizes. We see that for none of the step sizes the

performance drops as the number of unlabeled tweets grows–the

typical symptom of semantic drift.

0.3

0.33

0.36

0.39

0.42

0.45

0 5000 10000

F1

Number of Unlabeled Examples

k=1000
k=2000
k=3000
k=4000

Figure 2: F1 of the resulting classifier in every iteration of Self-
Pretraining with different values of 𝑘–the number of randomly se-
lected pseudo-labels. The middle values are interpolated. The re-
sults are in the test set of ADR dataset.

Self-Pretraining relies on iterative distillation–Section 3.1–to

transfer knowledge from one iteration to the next one. Model distil-

lation leverages the temperature 𝑇 in the softmax layer, see Equa-

tion 1. It is informative to find the degree at which this hyper-

parameter can affect the learning performance. Table 4 reports the

model performance at varying values of the hyper-parameter 𝑇 .

We see that the performance peaks at 𝑇 = 5. In section 3.2 we

proposed an objective function and argued that the second term

of the function prevents the hard labels of the training set from

erasing the information transferred from the previous iteration. To

demonstrate the impact of the second term, in Table 5 we report the

model performance at varying values of the hyper-parameter _–the

weight of the second term. We see that the performance almost

gradually improves as we increase _ and peaks at _ = 0.4. This is

primarily due to the improvement in precision.

In Section 3.4 we proposed to transform the class probability

distribution in the iteration 𝑡 + 1 into a new distribution that re-

sembles the distribution in the iteration 𝑡 . We argued that this

transformation can help to mitigate the semantic drift problem via

constraining the degree at which the pseudo-labels can evolve in

every iteration, therefore, can potentially limit the negative impact

of noisy pseudo-labels. In Table 6 we report the model performance

T F1 Precision Recall
2 0.422 0.361 0.514

3 0.420 0.376 0.483

4 0.421 0.356 0.517

5 0.433 0.382 0.506

6 0.422 0.370 0.491

Table 4: Results of Self-Pretraining in the test set of ADR dataset
at varying values of the temperature (𝑇) for iterative distillation.

_ F1 Precision Recall
0.1 0.425 0.357 0.529

0.2 0.428 0.355 0.541

0.3 0.420 0.376 0.483

0.4 0.438 0.377 0.531

0.5 0.421 0.350 0.534

Table 5: Results of Self-Pretraining in the test set of ADR dataset
at varying values of the hyper-parameter (_) for our two-stage
learning–see Equation 2.

𝛼 F1 Precision Recall
0.1 0.420 0.376 0.483

0.2 0.422 0.353 0.530

0.3 0.413 0.345 0.518

0.4 0.424 0.355 0.532

0.5 0.429 0.363 0.527

Table 6: Results of Self-Pretraining in the test set of ADR dataset
at varying values of the hyper-parameter (𝛼) for the inertial trans-
formation of the pseudo-labels–see Equation 3.

Deactivated Step F1 Precision Recall
two-stage learning 0.339 0.373 0.333

trapezoidal lr 0.360 0.235 0.770

iterative distillation 0.389 0.320 0.495

inertial transform 0.420 0.365 0.497

Table 7: Results of Self-Pretraining in the test set of ADR dataset
after deactivating the distillation (Section 3.1), the two-stage learn-
ing (Section 3.2), the trapezoidal learning rate (Section 3.3), and the
inertial transformation (Section 3.4).

at varying values of the hyper-parameter 𝛼 in Equation 3. This

hyper-parameter governs the degree of the transformation. We see

that the performance noticeably improves as we increase the value

of 𝛼 . Finally, we report an ablation study in Table 7. In the previous

experiments we showed that a better performance in ADR dataset is

achievable by a dataset specific hyper-parameter tuning. Nonethe-

less, we still expect that, with the current hyper-parameters in ADR,

the ablation study can reveal the relative importance of the Self-

Pretraining modules in general. In this experiment, we replaced

the two-stage training model (Section 3.2) with the simple data

augmentation of the labeled and pseudo-labels. Additionally, we

replaced our right trapezoidal learning rate (Section 3.3) with the

default slanted learning rate [18]. We replaced our iterative distilla-

tion process (Section 3.1) with simply using the hard labels in every

iteration. Finally, we deactivated our pseudo-label transformation

step (Section 3.4). We see that the two-stage training model and the

inertial transform have the highest and the lowest contributions.

In summary, we showed that Self-Pretraining is the state-of-

the-art in multiple settings. The authors in [4] show that semi-

supervisedmodels–although under domain shift–typically fail when

they are evaluated on a different task from what they are initially

proposed for. Thus, they conclude that these models should be

evaluated in at least two datasets. In this study we evaluated Self-

Pretraining in three Twitter datasets. We selected strong baselines,

i.e., Tri-training with disagreement [50], Mutual Learning [61],

Spaced Repetition [4], and Co-Decomp [30], and showed that some

of them fail under certain cases. As opposed to these models, we

demonstrated that Self-Pretraining is either the best model or on a

par with the best model in every setting. We also reported an exten-

sive set of experiments that we carried out to reveal the qualities

of Self-Pretraining. These experiments empirically supported the

claims that we made throughout.

Our study is not flawless. To avoid imposing any constrain on the

underlying classifier, we proposed to randomly draw the unlabeled

documents–Algorithm 1, Line 7. However, if one can guarantee

certain classifier properties, then perhaps a sophisticated selection

policy will be more effective. The application of our framework in

other modalities, e.g., image classification, is also an unexplored

topic. Future work may investigate these directions.

6 CONCLUSIONS
In this study, we proposed a semi-supervised learning model called

Self-Pretraining . Our model is inspired by the traditional self-

training algorithm. Self-Pretraining employs the properties of neu-

ral networks to cope with the inherent problems of self-training.

Particularly, it employs an iterative distillation procedure to trans-

fer information across the iterations. It also utilizes a two-stage

training model to mitigate the semantic drift problem. Addition-

ally, Self-Pretraining uses an efficient learning rate schedule and

a pseudo-label transformation heuristic. We evaluated our model

in three publicly available Twitter datasets, and compared with six

baselines, including pretrained BERT. The experiments show that

our model consistently outperforms the existing baselines.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback.

REFERENCES
[1] Steven Abney. 2007. Semisupervised Learning for Computational Linguistics (1st

ed.). Chapman & Hall/CRC.

[2] Firoj Alam, Shafiq Joty, and Muhammad Imran. 2018. Domain Adaptation with

Adversarial Training and Graph Embeddings. In Proceedings of the 56th ACL.
Association for Computational Linguistics, Melbourne, Australia, 1077–1087.

[3] Thayer Alshaabi, David R Dewhurst, and et al. 2020. The growing echo chamber

of social media: Measuring temporal and social contagion dynamics for over 150

languages on Twitter for 2009–2020. arXiv preprint arXiv:2003.03667 (2020).

[4] Hadi Amiri. 2019. Neural Self-Training through Spaced Repetition. In Proceedings
of the 2019 Conference of NAACL. Minneapolis, Minnesota, 21–31.

[5] Eric Arazo, Diego Ortego, Paul Albert, and et al. 2020. Pseudo-Labeling and

Confirmation Bias in Deep Semi-Supervised Learning. In 2020 International Joint
Conference on Neural Networks, IJCNN, July 19-24, 2020. IEEE, 1–8.

[6] David Bamman and Noah A. Smith. 2015. Contextualized Sarcasm Detection on

Twitter. In Proceedings of the Ninth ICWSM. 574–577.

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum Learning. In Proceedings of the 26th ICML (Montreal, Quebec, Canada)

(ICML ’09). Association for Computing Machinery, New York, NY, USA, 41–48.

[8] David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital

Oliver, and Colin Raffel. 2019. MixMatch: AHolistic Approach to Semi-Supervised

Learning. In NeurIPS 2019, 8-14 Vancouver, BC, Canada. 5050–5060.

[9] Avrim Blum and Tom M. Mitchell. 1998. Combining Labeled and Unlabeled Data

with Co-Training. In Proceedings of the Eleventh COLT, 1998, Madison, Wisconsin,
USA, July 24-26, 1998. 92–100.

[10] Tom B Brown, Benjamin Mann, and et al. 2020. Language models are few-shot

learners. arXiv preprint arXiv:2005.14165 (2020).
[11] Cristian Buciluundefined, Rich Caruana, and Alexandru Niculescu-Mizil. 2006.

Model Compression. In Proceedings of the 12th ACM SIGKDD (Philadelphia, PA,

USA) (KDD ’06). 535–541.
[12] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-

uschka, and Tom M. Mitchell. 2010. Toward an Architecture for Never-Ending

Language Learning. In Proceedings of the Twenty-Fourth AAAI. 1306–1313.
[13] Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, and Vicente Ordonez. 2020. Cur-

riculum Labeling: Self-paced Pseudo-Labeling for Semi-Supervised Learning.

arXiv preprint arXiv:2001.06001 (2020).
[14] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien (Eds.). 2006. Semi-

Supervised Learning. The MIT Press.

[15] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. arXiv
preprint arXiv:2002.05709 (2020).

[16] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey

Hinton. 2020. Big self-supervised models are strong semi-supervised learners.

arXiv preprint arXiv:2006.10029 (2020).
[17] James R Curran, Tara Murphy, and Bernhard Scholz. 2007. Minimising semantic

drift with mutual exclusion bootstrapping. In Proceedings of the 10th Conference
of the Pacific Association for Computational Linguistics, Vol. 6. Bali, 172–180.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proc of the 2019 NAACL. 4171–4186.
[19] Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti,

and Anima Anandkumar. 2018. Born-Again Neural Networks. In Proceedings of
the 35th ICML, Stockholm, Sweden, July 10-15, 2018, Vol. 80. 1602–1611.

[20] Roberto Gonzalez-Ibaez, Smaranda Muresan, and Nina Wacholder. 2011. Identify-

ing Sarcasm in Twitter: A Closer Look. In Proceedings of the 49th ACL (Portland,

Oregon) (HLT ’11). 581–586.
[21] Suchin Gururangan, TamDang, Dallas Card, and Noah A. Smith. 2019. Variational

Pretraining for Semi-supervised Text Classification. In Proceedings of the 57th
ACL. Florence, Italy, 5880–5894.

[22] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, and Noah A. Smith. 2020. Don’t Stop Pretraining: Adapt Language

Models to Domains and Tasks. In Proceedings of ACL.
[23] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. 2020. Revisiting

Self-Training for Neural Sequence Generation. In 8th International Conference on
Learning Representations, ICLR 2020, April 26-30, 2020. OpenReview.net.

[24] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. 2019. Using Pre-Training Can

Improve Model Robustness and Uncertainty. In Proceedings of the 36th ICML,
California, USA, Vol. 97. 2712–2721.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[26] Nils Holzenberger, Andrew Blair-Stanek, and Benjamin Van Durme. 2020. A

Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering.

arXiv preprint arXiv:2005.05257 (2020).

[27] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-

tuning for Text Classification. In Proceedings of the 56th ACL. 328–339.
[28] Xiaolei Huang, Michael C Smith, Michael J Paul, Dmytro Ryzhkov, Sandra C

Quinn, David A Broniatowski, and Mark Dredze. 2017. Examining patterns of

influenza vaccination in social media. In Workshops at the 31st AAAI.
[29] Payam Karisani and Eugene Agichtein. 2018. Did You Really Just Have a Heart

Attack? Towards Robust Detection of Personal Health Mentions in Social Media.

In Proceedings of the 2018 World Wide Web Conference (Lyon, France). 137–146.
[30] Payam Karisani, Joyce Ho, and Eugene Agichtein. 2020. Domain-Guided Task

Decomposition with Self-Training for Detecting Personal Events in Social Media.

In Proceedings of The Web Conference 2020 (Taipei, Taiwan). 2411–2420.
[31] James Kirkpatrick, Razvan Pascanu, and et al. 2017. Overcoming catastrophic

forgetting in neural networks. Proceedings of the National Academy of Sciences
114, 13 (2017), 3521–3526.

[32] Samuli Laine and Timo Aila. 2017. Temporal Ensembling for Semi-Supervised

Learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[33] Dong-Hyun Lee. 2013. Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks. InWorkshop on challenges in repre-
sentation learning, ICML, Vol. 3.

[34] Jinhyuk Lee, Wonjin Yoon, and et al. 2019. BioBERT: a pre-trained biomedical

language representation model for biomedical text mining. Bioinformatics 36, 4
(09 2019), 1234–1240.

[35] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A Simple Unified

Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.

In Advances in Neural Information Processing Systems 31. 7167–7177.

[36] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic Interference in Con-

nectionist Networks: The Sequential Learning Problem. Psychology of Learning

and Motivation, Vol. 24. Academic Press, 109 – 165.

[37] Richard Mccreadie, Cody Buntain, and Ian Soboroff. 2019. TREC Incident Streams:

Finding Actionable Information on Social Media. In Proceedings of the 16th IS-
CRAM, 2019.

[38] Tom M Mitchell et al. 1997. Machine learning. 1997. Burr Ridge, IL: McGraw Hill
45, 37 (1997), 870–877.

[39] Subhabrata Mukherjee and Ahmed Hassan Awadallah. 2020. Uncertainty-aware

Self-training for Text Classification with Few Labels. arXiv:2006.15315 [cs.CL]

[40] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E.

Hinton. 2017. Regularizing Neural Networks by Penalizing Confident Output

Distributions. In 5th ICLR 2017, Toulon, France, April 24-26, 2017.
[41] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Representa-

tions. In Proceedings of the 2018 NAACL. New Orleans, Louisiana, 2227–2237.

[42] Siyuan Qiao,Wei Shen, Zhishuai Zhang, BoWang, and Alan Yuille. 2018. Deep Co-

Training for Semi-Supervised Image Recognition. In Proceedings of the European
Conference on Computer Vision (ECCV).

[43] Colin Raffel and et al. 2019. Exploring the limits of transfer learning with a

unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019).
[44] Sebastian Ruder and Barbara Plank. 2018. Strong Baselines for Neural Semi-

Supervised Learning under Domain Shift. In Proceedings of the 56th ACL (Mel-

bourne, Australia). Association for Computational Linguistics, 1044–1054.

[45] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. 2017. Asymmetric Tri-

Training for Unsupervised Domain Adaptation. In Proceedings of the 34th ICML
(Sydney, NSW, Australia) (ICML’17). 2988–2997.

[46] M. Sajjadi, M. Javanmardi, and T. Tasdizen. 2016. Mutual exclusivity loss for

semi-supervised deep learning. In 2016 IEEE (ICIP). 1908–1912.
[47] Dale Schuurmans and Finnegan Southey. 2002. Metric-Based Methods for Adap-

tive Model Selection and Regularization. Machine Learning 48, 1 (2002), 51–84.

[48] H Scudder. 1965. Probability of error of some adaptive pattern-recognition

machines. IEEE Transactions on Information Theory 11, 3 (1965), 363–371.

[49] Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng MaXiaoyu Tao, and Nanning

Zheng. 2018. Transductive semi-supervised deep learning usingmin-max features.

In Proceedings of (ECCV). 299–315.
[50] Anders Søgaard. 2010. Simple Semi-Supervised Training of Part-of-Speech Tag-

gers. In Proceedings of the ACL 2010 (Uppsala, Sweden). USA, 205–208.
[51] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of Frustratingly Easy

Domain Adaptation. In Proceedings of the Thirtieth AAAI, February 12-17, 2016,
Phoenix, Arizona, USA. 2058–2065.

[52] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:

Weight-averaged consistency targets improve semi-supervised deep learning

results. In Advances in Neural Information Processing Systems 30. 1195–1204.
[53] Davy Weissenbacher and Graciela Gonzalez-Hernandez (Eds.). 2019. Proceedings

of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop &
Shared Task. Association for Computational Linguistics, Florence, Italy.

[54] Thomas Wolf, Lysandre Debut, and et al. 2019. HuggingFace’s Transformers:

State-of-the-art Natural Language Processing. ArXiv abs/1910.03771 (2019).

[55] Jiawei Wu, Lei Li, and William Yang Wang. 2018. Reinforced Co-Training. In

Proceedings of the 2018 NAACL. New Orleans, Louisiana, 1252–1262.

[56] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. 2019.

Unsupervised Data Augmentation for Consistency Training. arXiv preprint
arXiv:1904.12848 (2019).

[57] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. 2020. Self-Training

With Noisy Student Improves ImageNet Classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58] David Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling

Supervised Methods. In 33rd ACL. Cambridge, Massachusetts, USA, 189–196.

[59] Kiran Zahra, Muhammad Imran, and Frank O. Ostermann. 2020. Automatic

identification of eyewitness messages on twitter during disasters. Information
Processing & Management 57, 1 (2020), 102107.

[60] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. 2018.

mixup: Beyond Empirical Risk Minimization. In 6th ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings.

[61] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. 2018. Deep

Mutual Learning. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

https://arxiv.org/abs/2006.15315

	Abstract
	1 Introduction
	2 Related Work
	3 Semi-Supervised Learning via Self-Pretraining
	3.1 Hypothesis Transfer and Iterative Distillation
	3.2 Two-Stage Semi-Supervised Learning
	3.3 Right Trapezoidal Learning Rates
	3.4 Inertial Class Distributions

	4 Experimental Setup
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Details

	5 Results and Discussion
	5.1 Main Results
	5.2 Empirical Analysis

	6 Conclusions
	Acknowledgments
	References

